Dino-Chicken: Wacky But Serious Science Idea of 2011
Stephanie Pappas, LiveScience Senior Writer
Date: 27 December 2011 
 
      
        
          |   | 
              | Evolution in reverse: Could this chicken become a dinosaur? CREDIT:  sanddebeautheil, Shutterstock
 
 
 | 
    
    
    
 Paleontologist Jack Horner has always been a bit of an iconoclast. In 
the 1970s, Horner, the curator of paleontology at the Museum of the 
Rockies in Bozeman, Mont., and his friend Bob Makela discovered a 
Maiasaura nesting site, painting the first picture of dinosaurs as 
doting moms and dads. He's also been at the forefront of research 
suggesting that dinosaurs were fast growing and warm-blooded.
But Horner's newest idea takes iconoclasm to a new level. He wants, in short, to hatch a dinosaur.
Or something very much like one, at least. Horner, who served as a 
technical advisor for the "Jurassic Park" movies, has no illusions that 
the technique in that movie — extracting dino DNA from mosquitoes in 
amber — would work. DNA degrades too quickly, for one thing. Dinosaur DNA has proved impossible to extract from actual dinosaur bones, never mind blood-sucking insects.
"If you actually had a piece of amber and it had an insect in it, and 
you drilled into it, and you got something out of that insect and you 
cloned it, and you did it over and over and over again, you'd have a 
room full of mosquitoes," Horner said in a February 2011 TED Talk in 
Long Beach, Calif. TED, or Technology, Entertainment and Design, is a 
nonprofit focusing on "ideas worth spreading."
So Horner has another idea: Use the living dinosaurs among us
 to recreate creatures dead for millions of years. Anyone who's seen 
"Jurassic Park" knows that birds are dinosaurs, part of the evolutionary
 line containing those toothy Velociraptors.
 What's less known is that organisms carry their evolutionary history 
with them. Human embryos, for example, have temporary tails, which are 
absorbed by the body during development. Rarely, babies are born with 
vestigial tails, the result of scrambled genetic processes that prevent 
the tail from getting re-absorbed. These evolutionary remnants are 
called atavisms.
Enough atavisms have been discovered in birds to make the idea of 
"reverse-engineering" a dinosaur out of, say, a chicken possible, Horner
 says. You wouldn't be adding anything to the bird to make it more 
dinosaurlike; all the ingredients are in its DNA. Horner's goal is to 
figure out how to wake up those ingredients.
LiveScience talked with Horner about his "chickenosaurus" plan and what sort of dinosaur he'd like to keep as a pet.
LiveScience: What was the genesis of this chickenosaurus idea?
Horner: Knowing that birds descended from dinosaurs and knowing the 
changes that occur from dinosaurs to birds, we know that the changes 
that did occur occurred because of genetics.
A friend of mine, Hans Larsson at McGill University, was studying some 
of these changes and looking into how it was that dinosaurs lost their 
tails in the transformation from dinosaurs to birds. They also 
transformed their arms from a hand and an arm to a wing. I got to 
thinking, if he discovered the genes that were responsible for both of 
those transformations, we could just simply reverse evolution and reactivate the tail, and possibly make a hand back out of the wing.
And then what we would have by doing those two things, you'd actually 
take a bird and turn it into an animal that looked a lot like one of the
 meat-eating dinosaurs. It seemed like a good idea.
LiveScience: What kind of animal would chickenosaurus be? 
Horner: It's still a chicken. It's a modified chicken. You'd really have to mess with the DNA to make it something different.
The most important thing is that you cannot activate an ancestral 
characteristic unless the animal has ancestors. So if we can do this, it
 definitely shows that evolution works.
LiveScience: You've mentioned in the past that you see this 
dino-chicken as a teaching tool to help people understand evolution. Do 
you see that working?
Horner: Of course. You bet. There are people who are misinformed, and 
there are people who are uninformed [about the validity of evolution]. 
If people are uninformed, this will probably get through to them. If 
they've been misinformed and don't mind being misinformed, then they 
probably will continue to be misinformed.
LiveScience: Either way, it'd be a pretty awesome thing to take into a classroom.
Horner: Yes, it would. Exactly.
LiveScience: Starting with a chicken, how close could we really get to what a dinosaur looked like?
Horner: We're working with an animal that has all the right stuff. It's
 more about subtle changes, adding a tail or fixing a hand or possibly 
adding teeth, what we would think of as being relatively simple changes 
rather than messing with physiology or something like that.
A bird is really a dinosaur, so we're pretty sure that the breathing 
apparatus of a bird evolved from the breathing apparatus of a dinosaur, 
and is therefore completely different than a mammal. The physiology of a
 bird is evolved from a dinosaur and not from a mammal, so it's not like
 we're trying to take a mammal and turn it into a dinosaur.
LiveScience: Would chickenosaurus teach us anything about dinosaurs we can't learn from fossils?
Horner: It's not really about understanding dinosaurs at all. Once we 
learn what certain genes do and how to turn them on and turn them off, 
then we have great potential of solving some medical mysteries.
 There are a lot of ways to think about this, but it's not really about 
dinosaurs other than solving Hans Larsson's problem of figuring out how 
birds lost their tails. [
Tales of 10 Vestigial Limbs]
LiveScience: What do you see as the biggest challenge of making chickenosaurus happen?
Horner: The biggest challenge, first off, is to find the genes. We know
 that in the development of a tail, there are a variety of things that 
have to happen, so there are a couple of ways to possibly go about this.
One, as we know, when a chicken embryo is developing in the egg, just 
like basically all animals, the embryo actually for a time has a tail 
and then the trail re-absorbs. So if we could find the gene that 
re-absorbs the tail and not allow that gene to turn on then we could 
potentially hatch a chicken with a tail.
The other method would be simply to go in and discover what Hox genes 
[the genes that determine the structure of an organism] might be 
responsible for actually adding tail vertebrae, and then to see if we 
could add some, either by manipulating the Hox genes or by using 
temperature. There have been some experiments done showing that adding 
heat will add a vertebra here or there.
LiveScience: Where are you in this process now?
Horner: Right now, mostly I'm looking for a postdoctoral researcher. An
 adventurous postdoc who knows a lot about developmental biology and a 
little bit about birds and has done some work about chickens to work in 
our lab here in Bozeman.
Me, I just go through the literature, looking for anything that might 
give me a clue as to what genes might be responsible for tail absorption
 or tail growth or something that might help me with hands.
LiveScience: The comparisons to "Jurassic Park" are easy to 
make, but have you ever seen the movie "The Birds?" Do we really want 
chickens with extra teeth and claws running around?
Horner: You can't really compare it to either movie. First off, you can
 go out in the Serengeti and there are all kinds of animals that will 
eat you, but if you're driving around in your Jeep, you're just fine. 
The lions and cheetahs and leopards are not going to try to get into 
your Jeep when there are plenty of plant-eaters out there to eat that 
aren't inside of a metal cage.
That's the funny thing about "Jurassic Park," right? All these dinosaurs want to eat people no matter how hard they are to get.
So we don't have to worry about "Jurassic Park," because that's just 
fiction. Animals don't act that way. They're not vengeful. And birds 
aren't vengeful either.
LiveScience: So if you could bring a dinosaur back — the real thing, not a modified chicken — what species would you choose?
Horner: A little one. A little plant-eater.
LiveScience: No T. rex for you?
Horner: Would you make something that would turn around and eat you? 
Sixth-graders would do that, but I'd just as soon make something that 
wouldn't eat me. And you could have it as a pet without worrying about 
it eating the rest of your pets.
source
Source:
LiveScience